Design Team Convergence: The Influence of Example Solution Quality

Author:

Fu Katherine1,Cagan Jonathan1,Kotovsky Kenneth1

Affiliation:

1. Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213

Abstract

This study examines how engineering design teams converge upon a solution to a design problem and how their solution is influenced by information given to them prior to problem solving. Specifically, the study considers the influence of the type of information received prior to problem solving on team convergence over time, as well as on the quality of produced solutions. To understand convergence, a model of the team members’ solution approach was developed through a cognitive engineering design study, specifically examining the effect of the introduction of a poor example solution or a good example solution prior to problem solving on the quality of the produced solutions. Latent semantic analysis was used to track the teams’ convergence, and the quality of design solutions was systematically assessed using pre-established criteria and multiple evaluators. Introducing a poor example solution was shown to decrease teams’ convergence over time, as well as the quality of their design solution; introducing a good example solution did not produce a statistically significant different effect on convergence compared with the control (with no prior example solution provided) but did lead to higher quality solutions.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference34 articles.

1. PDMA Research on New Product Development Practices: Updating Trends and Benchmarking Best Practices;Griffin;J. Prod. Innovation Manage.

2. The Influence and Value of Analogical Thinking During New Product Ideation;Dahl;J. Mark. Res.

3. Variances in the Impact of Visual Stimuli on Design Problem Solving Performance;Goldschmidt;Des. Stud.

4. Modality and Representation in Analogy;Linsey;Artif. Intell. Eng. Des. Anal. Manuf.

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3