The Influence of Turbine Clearance Gap Leakage on Passage Velocity and Heat Transfer Near Blade Tips: Part II—Source Flow Effects on Blade Suction Sides

Author:

Rued K.1,Metzger D. E.1

Affiliation:

1. Mechanical and Aerospace Engineering Department, Arizona State University, Tempe, AZ 85287

Abstract

An experimental study has been designed and conducted to investigate turbine blade suction side heat transfer and flow near the tip clearance gap. Modeling of the phenomena was carried out in a water tunnel with injection through an adjustable streamwise corner slot in a square test channel. A thin stainless steel ohmic-heated test surface adjacent to the slot simulated the airfoil surface and permitted fine resolution of local heat transfer rates. Mean and fluctuating flow field measurements were conducted with a laser-Doppler anemometer to aid interpretation of the heat transfer results and to provide a basis for comparison with future numerical predictions. The results indicate that flow leakage from the turbine tip clearance gap into the suction side hot gas path results in more extensive and complex heat transfer effects than those measured for the blade pressure side in the companion Part I study. The character of the heat transfer andflow field deviations from closed gap conditions is strongly dependent on the particular combination of flow and geometry parameters present. The observed characteristics have been partitioned into categories of similar behavior, and the parameter combinations that define the boundaries between categories have been tentatively identified for the benefit of designers. The overall conclusions of this study and of the parallel study reported in Part I are that the effects of tip leakage flow on airfoil surface heat transfer near the blade tip can be very significant on both pressure and suction sides, and should be taken into account in blade cooling specification and design.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3