Hybrid State Space Modeling of a Spark Ignition Engine for Online Fault Diagnosis

Author:

Nadeer E. P.1,Patra Amit2,Mukhopadhyay Siddhartha2

Affiliation:

1. Advanced Technology Development Centre (ATDC), Indian Institute of Technology, Kharagpur 721302, West Bengal, India e-mail:

2. Professor Department of Electrical Engineering, Indian Institute of Technology, Kharagpur 721302, West Bengal, India e-mail:

Abstract

In this work, a nonlinear hybrid state space model of a complete spark ignition (SI) gasoline engine system from throttle to muffler is developed using the mass and energy balance equations. It provides within-cycle dynamics of all the engine variables such as temperature, pressure, and mass of individual gas species in the intake manifold (IM), cylinder, and exhaust manifold (EM). The inputs to the model are the same as that commonly exercised by the engine control unit (ECU), and its outputs correspond to available engine sensors. It uses generally known engine parameters, does not require extensive engine maps found in mean value models (MVMs), and requires minimal experimentation for tuning. It is demonstrated that the model is able to capture a variety of engine faults by suitable parameterization. The state space modeling is parsimonious in having the minimum number of integrators in the model by appropriate choice of state. It leads to great computational efficiency due to the possibility of deriving the Jacobian expressions analytically in applications such as on-board state estimation. The model was validated both with data from an industry standard engine simulation and those from an actual engine after relevant modifications. For the test engine, the engine speed and crank angle were extracted from the crank position sensor signal. The model was seen to match the true values of engine variables both in simulation and experiments.

Funder

Aeronautical Development Agency

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3