Analysis of a Solar-Aided Natural Gas Cogeneration Plant Applied to the Textile Sector

Author:

Zuleta Marín Juan Sebastián1,Konrad Burin Eduardo2,Bazzo Edson1

Affiliation:

1. Laboratory of Combustion and Thermal Systems Engineering, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil

2. Department of Engineering and Exact Sciences, Federal University of Parana, Palotina, PR 85950000, Brazil

Abstract

Abstract Two combined cooling heating power (CCHP) plant layouts are proposed to supply the electricity, heat, and cooling energy demands of textile industries. In the first scenario, natural gas fueled internal combustion engines are integrated with a heat recovery steam generator (HRSG) and a hot water absorption chiller to produce electricity, saturated steam, and chilled water for air conditioning purposes. In the second concept, a linear Fresnel solar field is integrated with the same CCHP to provide fuel economy during the sunny hours. The proposed plants were compared with a base case scenario in which electricity is imported from the grid, saturated steam is provided by a natural gas steam generator (NGSG), and chilled water is provided by electric chillers. Simulations were performed considering mass and energy conservation equations, information provided by equipment manufacturers and typical meteorological year (TMY) data sets for three different locations. The economic performance of plants was evaluated by calculating the net present value (NPV), the internal rate of return (IRR), and the discounted payback period (DPP) of investments. As an important result, a great potential for reducing the fuel consumption and CO2 emissions of hybrid concept was identified. However, the high investment of Fresnel collectors coupled with low natural gas prices showed the proposed hybrid concept as economically unfeasible. Nevertheless, it is expected that hybrid systems will have an important role once Fresnel technology costs are continuously declining and solar energy appears as a promising alternative for the sustainable transition to a low carbon future.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3