Affiliation:
1. School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150
Abstract
Abstract
The goal of this paper is to derive closed form expressions for the energy release rate and mode partitioning of face/core debonds in sandwich composites, which include loading in shear. This is achieved by treating a finite length sandwich beam as having a “debonded” section where the debonded top face and the substrate (core and bottom face) are free and a “joined” section where a series of springs (elastic foundation) exists between the face and the substrate. The elastic foundation analysis is comprehensive and includes the deformation of the substrate part (unlike other elastic foundation studies in the literature) and is done for a general asymmetric sandwich construction. A J-integral approach is subsequently used to derive a closed form expression for the energy release rate. In the context of this elastic foundation model, a mode partitioning approach based on the transverse and axial displacements at the beginning of the elastic foundation (“debond tip”) is proposed. The results are compared with finite element results and show very good agreement.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献