A Cable-Suspended Robot With a Novel Cable Based End Effector

Author:

Saber Omid1,Abyaneh Soroush1,Zohoor Hassan1

Affiliation:

1. Sharif University of Technology, Tehran, Iran

Abstract

Object handling is one of the most important applications of cable-suspended robots, which can be obtained by use of a gripper as its end-effector. In this paper, a novel cable-driven multi-finger gripper assembled on a cable-suspended robot has been presented. Using lock/unlock mechanisms, the under-actuated finger mechanism has been designed to have a human like motion. A cable-suspended robot structure with 3 position degrees of freedom is also proposed by employing active/passive cables in such a way that makes it capable of resisting external moments, while it may be simplified to a spatial point-mass cable robot during positioning operation. Furthermore, the robot workspace has been investigated and by considering both lower and upper cable tension limits, a formulation for obtaining the force-feasible workspace is presented and the influence of the minimum tension limit on the workspace is discussed. Finally the moment-resisting capability of the proposed robot has been investigated and by considering several cases, its moment-resisting region is compared to an analogous robot.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3