Assumed-Modes Formulation of Piezoelectric Energy Harvesters: Euler-Bernoulli, Rayleigh and Timoshenko Models With Axial Deformations

Author:

Erturk Alper1,Inman Daniel J.1

Affiliation:

1. Virginia Tech, Blacksburg, VA

Abstract

Harvesting of vibration energy has been investigated by numerous researchers over the last decade. The research motivation in this field is due to the reduced power requirement of small electronic components such as wireless sensor networks used in monitoring applications. The ultimate goal is to power such devices by using the waste vibration energy available in their environment so that the maintenance requirement for battery replacement is minimized. Among the basic transduction mechanisms that can be used for vibration-to-electricity conversion, piezoelectric transduction has received the most attention due to the large power densities and ease of application of piezoelectric materials. Typically, a piezoelectric energy harvester is a cantilevered beam with one or two piezoceramic layers and the source of excitation is the base motion in the transverse direction. This paper presents general formulations for electromechanical modeling of base-excited piezoelectric energy harvesters with symmetric and asymmetric laminates. The electromechanical derivations are given using the assumed-modes method under the Euler-Bernoulli, Rayleigh and Timoshenko beam assumptions in three sections. The formulations account for an independent axial displacement variable in all cases. Comparisons are provided against the analytical solution given by the authors for symmetric laminates and convergence of the assumed-modes solution to the analytical solution with the increasing number of modes is shown. Experimental validations are also presented by comparing the electromechanical frequency response functions derived here against the experimentally obtained ones. The electromechanical assumed-modes formulations given here can be used for modeling of piezoelectric energy harvesters with asymmetric laminates as well as those with moderate thickness and varying geometry in the axial direction.

Publisher

ASMEDC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3