A Vascular Model for Heat Transfer in an Isolated Pig Kidney During Water Bath Heating

Author:

Chen Cuiye1,Xu Lisa X.23

Affiliation:

1. School of Mechanical Engineering, Purdue University, USA

2. School of Mechanical Engineering, Department of Biomedical Engineering, Purdue University, USA

3. School of Life Science and Technology, Shanghai Jiao Tong University, People’s Republic of China

Abstract

Isolated pig kidney has been widely used as a perfused organ phantom in the studies of hyperthermia treatments, as blood perfusion plays an essential role in thermoregulation of living tissues. In this research, a vascular model was built to describe heat transfer in the kidney phantom during water bath heating. The model accounts for conjugate heat transfer between the paired artery and vein, and their surrounding tissue in the renal medulla. Tissue temperature distribution in the cortex was predicted using the Pennes bioheat transfer equation. An analytical solution was obtained and validated experimentally for predicting the steady state temperature distribution in the pig kidney when its surface kept at a uniform constant temperature. Results showed that local perfusion rate significantly affected tissue temperature distributions. Since blood flow is the driving force of tissue temperature oscillations during hyperthermia, the newly developed vascular model provides a useful tool for hyperthermia treatment optimization using the kidney phantom model.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference18 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3