Effects of Reynolds Number and Free-Stream Turbulence on Boundary Layer Transition in a Compressor Cascade

Author:

Schreiber Heinz-Adolf1,Steinert Wolfgang1,Ku¨sters Bernhard2

Affiliation:

1. German Aerospace Center (DLR), Institute of Propulsion Technology, 51170 Ko¨ln, Germany

2. Siemens AG, Power Generation (KWU), 45466 Mu¨lheim a.d. Ruhr, Germany

Abstract

An experimental and analytical study has been performed on the effect of Reynolds number and free-stream turbulence on boundary layer transition location on the suction surface of a controlled diffusion airfoil (CDA). The experiments were conducted in a rectilinear cascade facility at Reynolds numbers between 0.7 and 3.0×106 and turbulence intensities from about 0.7 to 4 percent. An oil streak technique and liquid crystal coatings were used to visualize the boundary layer state. For small turbulence levels and all Reynolds numbers tested, the accelerated front portion of the blade is laminar and transition occurs within a laminar separation bubble shortly after the maximum velocity near 35–40 percent of chord. For high turbulence levels (Tu>3 percent) and high Reynolds numbers, the transition region moves upstream into the accelerated front portion of the CDA blade. For those conditions, the sensitivity to surface roughness increases considerably; at Tu=4 percent, bypass transition is observed near 7–10 percent of chord. Experimental results are compared to theoretical predictions using the transition model, which is implemented in the MISES code of Youngren and Drela. Overall, the results indicate that early bypass transition at high turbulence levels must alter the profile velocity distribution for compressor blades that are designed and optimized for high Reynolds numbers.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3