Effect of Dehydroxylation on Tribological Performances of Synthetic Magnesium Silicate Hydroxide as Lubricant Additive

Author:

Zhang Hao1,Zhang Chenhui1

Affiliation:

1. Tsinghua University State Key Laboratory of Tribology in Advanced Equipment, , Beijing 100084 , China

Abstract

Abstract The heat-treated nanoparticle heat-treated magnesium silicate hydroxide (MSHH) was obtained based on the synthesis of lamellar nanoparticle magnesium silicate hydroxide (MSH) and analysis of thermal stability, and the morphology, phase composition, and chemical groups of nanoparticles were subsequently characterized. The heat treatment process induces partial dehydroxylation of MSHH, while preserving the layered structure. Compared with MSH, the tribological performances of MSHH as a lubricant additive have been greatly improved. The mechanical properties of MSH and MSHH are analyzed by calculation of elastic constants using density functional theory (DFT). The interactions among dispersant oleic acid (OA), nanoparticles (MSH and MSHH), and Fe tribopairs were investigated by simulations of classical molecular dynamics (CMD) from the views of adsorption energy and confined shear. The tribological mechanism of MSHH as a lubricant additive is proposed based on the decreased shear strength and weakened agglomeration.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3