A Direct Tool Path Planning Algorithm for Line Scanning Based Stereolithography

Author:

Zhou Chi1

Affiliation:

1. Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260 e-mail:

Abstract

This paper presents a novel tool path planning approach for polygonal mirror scanning based stereolithography (STL) process. Compared with traditional laser scanning and mask projection based STL process, the polygonal mirror scanning based process can build part with high surface quality and precision without losing the fabrication efficiency. As an emerging additive manufacturing (AM) process, no efficient tool path planning algorithm is available in current system. This paper presents a direct tool path planning algorithm without converting the three-dimensional model into two-dimensional contours. Different test cases are used to verify its efficiency and effectiveness. Compared with the commercial software, the proposed algorithm is several times faster. Physical parts are also built using the tool path generated by the proposed algorithm.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference38 articles.

1. Bourell, D., Leu, M., and Rosen, D., 2009, “Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing,” NSF Workshop, Arlington, VA, Mar. 30–31, pp. 16–18.

2. Microstereolithography Using a Dynamic Mask Generator and a Noncoherent Visible Light Source;Int. Soc. Opt. Photonics

3. Multiple LED Photographic Curing of Models for Design Verification;Rapid Prototyping J.,1999

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3