Propulsion Cost Changes of Ultra-Lightweight Manual Wheelchairs After One Year of Simulated Use

Author:

Misch Jacob1,Sprigle Stephen1

Affiliation:

1. Georgia Institute of Technology Rehabilitation Engineering and Applied Research (REAR) Laboratory, , 801 Atlantic Drive NW, Atlanta, GA 30332

Abstract

Abstract Manual wheelchairs are available with folding or rigid frames to meet the preferences and needs of individual users. Folding styles are commonly regarded as more portable and storable, whereas rigid frames are commonly regarded as more efficient for frequently daily use. To date, there are no studies directly comparing the performances of the frame types. Furthermore, while differences have been reported in the longevity of the frame types, no efforts have been made to relate this durability back to the real-world performance of the frames. This study investigated the propulsion efficiencies of four folding and two rigid ultra-lightweight frames equipped with identical drive tires and casters. A robotic wheelchair tester was used to measure the propulsion costs of each chair over two surfaces: concrete and carpet. A motorized carousel was used to drive the chairs 511 km around a circular track to simulate one year of use for each wheelchair. After simulated use, five of the six wheelchairs showed no decrease in propulsion effort, indicating that the frames were able to withstand the stresses of simulated use without a detrimental impact on performance. In the unused “new” condition, rigid chairs were found to have superior (>5%) performance over folding frames on concrete and carpet, and in the “worn” condition rigid chairs had superior performance over folding chairs on concrete but were comparable on the carpeted surface.

Funder

National Institute on Disability, Independent Living, and Rehabilitation Research

Publisher

ASME International

Reference53 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3