Optical Measurement of Gas Turbine Engine Soot Particle Effluents

Author:

Litchford R. J.1,Sun F.1,Few J. D.2,Lewis J. W. L.2

Affiliation:

1. ERC Incorporated, 1940 Elk River Dam Road, Tullahoma, TN 37388

2. Center for Laser Applications, University of Tennessee Space Institute, B. H. Goethert Parkway, Tullahoma, TN 37388

Abstract

This paper addresses optical-based techniques for measuring soot particulate loading in the exhaust stream of gas turbine engines. The multi-angle scattering and multi-wavelength extinction of light beams by ensembles of submicrometer soot particles was investigated as a diagnostic means of inferring particle field characteristics. This is, the particle size distribution function and particle number density were deduced using an innovative downhill simplex inversion algorithm for fitting the deconvolved Mie-based scattering/extinction integral to the measured scattering/extinction signals. In this work, the particle size distribution was characterized by the widely accepted two-parameter log-normal distribution function, which is fully defined with the specification of the mean particle diameter and the standard deviation of the distribution. The accuracy and precision of the algorithm were evaluated for soot particle applications by applying the technique to noise-perturbed synthetic data in which the signal noise component is obtained by Monte Carlo sampling of Gaussian distributed experimental errors of 4, 6, and 10 percent. The algorithm was shown to yield results having an inaccuracy of less than 10 percent for the highest noise levels and an imprecision equal to or less than the experimental error. Multi-wavelength extinction experiments with a laboratory bench-top burner yielded a mean particle diameter of 0.039 μm and indicated that molecular absorption by organic vapor-phase molecules in the ultraviolet region should not significantly influence the measurements. A field demonstration test was conducted on one of the JT-12D engines of a Sabre Liner jet aircraft. This experiment yielded mean diameters of 0.040 μm and 0.036 μm and standard deviations of 0.032 μm and 0.001 μm for scattering and extinction methods, respectively. The total particulate mass flow rate at idle was estimated to be 0.54 kg/h.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3