Affiliation:
1. Department of Mechanical Engineering, University of Strathclyde, Glasgow G1 1XJ, United Kingdom
Abstract
We propose a power-law based effective mean free path (MFP) model so that the Navier-Stokes-Fourier equations can be employed for the transition-regime flows typical of gas micro/nanodevices. The effective MFP model is derived for a system with planar wall confinement by taking into account the boundary limiting effects on the molecular free paths. Our model is validated against molecular dynamics simulation data and compared with other theoretical models. As gas transport properties can be related to the mean free path through kinetic theory, the Navier-Stokes-Fourier constitutive relations are then modified in order to better capture the flow behavior in the Knudsen layers close to surfaces. Our model is applied to fully developed isothermal pressure-driven (Poiseuille) and thermal creep gas flows in microchannels. The results show that our approach greatly improves the near-wall accuracy of the Navier-Stokes-Fourier equations, well beyond the slip-flow regime.
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献