A Spectral Element Simulation of Gravitational Flow During Plastic Pipe Extrusion

Author:

Githuku D. N.1,Giacomin A. J.1

Affiliation:

1. Mechanical Engineering Department, Texas A&M University, College Station, TX 77843-3123

Abstract

When plastic pipe is extruded, it emerges from an annular die and passes through a sizing sleeve to set its outer diameter. The pipe is then solidified in a cooling tank by spraying the outer surface with cold water. For thick walled pipe, material on the inside stays molten for a long time, and flows under its own weight. This gravitational flow (or sag) therefore governs the final pipe wall thickness distribution. Thus the solidification of extruded plastic pipe involves heat transfer with phase-change coupled with gravitational flow. The inside thermal boundary condition is arguably adiabatic. For the outside boundary, one can use either Newton’s law of cooling or an isothermal condition. In this paper, a commercially available spectral element code for simulating unsteady incompressible fluid flow with heat transfer, has been used to simulate sag flow. The model predictions of the solid pipe thickness distribution compared well with process data. Also, the effects of different heat transfer parameters on the thickness profile are evaluated. The extrusion temperature is found to have the greatest effect on the pipe wall profile.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cooling and annealing of plastic pipe;Thermal Science and Engineering Progress;2021-10

2. NUMERICAL SIMULATION OF THE DESIGN OF EXTRUSION PROCESS OF POLYMERIC MINI-TUBES;Applied Computer Science;2018-09-30

3. Plastic pipe solidification in extrusion;Journal of Polymer Engineering;2018-01-10

4. Knuckle formation from melt elasticity in plastic pipe extrusion;Journal of Non-Newtonian Fluid Mechanics;2017-04

5. Temperature rise in a verging annular die;Journal of Polymer Engineering;2016-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3