An Experimental Study on the Impact of Interface Temperature on Thermally Induced Wear Transitions in Dry Sliding

Author:

Schneider Daryl S.1,Stephens Lyndon S.1

Affiliation:

1. Department of Mechanical Engineering, Bearings and Seals Laboratory, University of Kentucky, 151 Ralph G. Anderson Building, Lexington, KY 40506-0503

Abstract

Premature failure of materials in sliding contact is often a result of the buildup of frictional heat at the contact interface. The interface temperature is an important parameter affecting the friction and wear process, and it is a function of the operating conditions as well as the heat that is dissipated through the material pair and the nearby surroundings. Possible solutions to alleviate thermal wear mechanisms include using more thermally robust materials and providing better cooling or heat dissipation to reduce the elevated temperatures. The latter is the subject of this paper. The micro heat sink ring (μHSR) is a patented approach to interface cooling in which a micro heat sink is constructed within millimeters of the contact interface. The ramifications of this are that temperature can be treated during wear testing as an independent variable and is only a very small function of speed and load. Using this approach, this work investigates the impact of the μHSR on the wear behavior of a tungsten carbide and carbon graphite material pair under dry running conditions at various rotational speeds and face pressures. Ring-on-ring experiments are performed using a thrust washer rotary tribometer within and in excess of the PV limit of the material pair (17.5MPa*m∕s). Results show the potential of the μHSR to allow for reliable operation of materials in sliding contact in harsh operating conditions. The ability to reduce the interface temperature shows a shift in the region of acceptable operating parameters normally defined for the material pair. This shift is attributed to the prevention of the onset of thermally induced wear transitions and thermal failures otherwise prone to occur under certain operating conditions.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference30 articles.

1. Rubbing Contact Materials for Face Type Mechanical Seals;Abar;Lubr. Eng.

2. The Application of Mechanical End Face Seals for Hot Water Service;Trytek;Lubr. Eng.

3. Observations of Thermoelastic Instability in Mechanical Face Seals;Netzel;Wear

4. The Effect of Interface Cooling in Controlling Surface Disturbances in Mechanical Face Seals;Netzel;Wear

5. Wear of Mechanical Seals in Light Hydrocarbon Service;Netzel;Wear

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3