Experimental Evaluation of a Metal Mesh Bearing Damper

Author:

Zarzour Mark1,Vance John1

Affiliation:

1. Mechanical Engineering Department, Texas A&M University, 1214-B Webhollow, College Station, TX 77843

Abstract

Metal mesh is a commercially available material used in many applications including seals, heat shields, filters, gaskets, aircraft engine mounts, and vibration absorbers. This material has been tested by the authors as a bearing damper in a rotordynamic test rig. The test facility was originally used to support the design of a turboprop engine, developing squirrel cages and squeeze film dampers for both the gas generator and power turbine rotors. To design the metal mesh damper, static stiffness and dynamic rap test measurements were first made on metal mesh samples in a specially designed nonrotating test fixture. These property tests were performed on samples of various densities and press fits. One sample was also tested in an Instron machine as an ancillary and redundant way to determine the stiffness. Using the stiffness test results and equations derived by a previous investigator, a spreadsheet program was written and used to size metal mesh donuts that have the radial stiffness value required to replace the squirrel cage in the power turbine. The squirrel cage and squeeze film bearing damper developed for the power turbine rotor was then replaced by a metal mesh donut sized by the computer code. Coast down tests were conducted through the first critical speed of the power turbine. The results of the metal mesh tests are compared with those obtained from previous testing with the squeeze film damper and show that the metal mesh damper has the same damping as the squeeze film at room temperature but does not lose its damping at elevated temperatures up to 103°C. Experiments were run under several different conditions, including balanced rotor, unbalanced rotor, heated metal mesh, and wet (with oil) metal mesh. The creep, or sag, of the metal mesh supporting the rotor weight was also measured over a period of several weeks and found to be very small. Based on these tests, metal mesh dampers appear to be a viable and attractive substitute for squeeze film dampers in gas turbine engines. The advantages shown by these tests include less variation of damping with temperature, ability to handle large rotor unbalance, and the ability (if required) to operate effectively in an oil free environment. Additional testing is required to determine the endurance properties, the effect of high impact or maneuver loads, and the ability to sustain blade loss loads (which squeeze films cannot handle). [S0742-4795(00)01002-4]

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference3 articles.

1. Zeidan, F. Y., San Andres, L. A., and Vance, J. M., 1996, “Design and Application of Squeeze Film Dampers in Rotating Machinery,” Proceedings of the 25th Turbomachinery Symposium, Houston, Texas, pp. 169–188.

2. Wang, X., 1996, private internet communication.

3. Tecza, J., 1997, private telephone and email communication, Mechanical Technology Incorporated.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3