Data-Driven Energy Efficiency and Part Geometric Accuracy Modeling and Optimization of Green Fused Filament Fabrication Processes

Author:

Alizadeh Morteza1,Esfahani Mehrnaz Noroozi1,Tian Wenmeng1,Ma Junfeng1

Affiliation:

1. Department of Industrial & Systems Engineering, Mississippi State University, Starkville, MS 39762

Abstract

Abstract Nowadays, increasing awareness of environmental protection has evoked the adoption of green technologies in design and manufacturing. As a revolutionizing manufacturing technology that produces components in a layer-by-layer fashion, additive manufacturing (AM) has followed this trend. Among a variety of AM processes, fused filament fabrication (FFF) is one of the most commonly used technologies. However, AM (including FFF) is inherently energy expensive and energy inefficient compared with the conventional manufacturing. Thus, an urgent investigation is needed to reduce the energy consumption for AM production. On the other hand, part geometric accuracy is an important aspect for the quality of additively manufactured components. It is not meaningful to improve AM’s energy consumption performance with compromised part geometric accuracy. Therefore, it is necessary to jointly consider energy consumption as well as part geometric accuracy in the AM process design. This study applies the statistical regression approach to model AM energy consumption and part geometric accuracy. The nondominated sorting genetic algorithm II (NSGA-II) and the technique for order of preference by similarity to ideal solution (TOPSIS) method together are used to locate the compromised optimal solution for AM process parameter settings. The effectiveness of the proposed approach is demonstrated through a case study developed with the FFF process and a specific part design. The results of this study are significant to both AM energy consumption and part geometric accuracy in terms of qualitative and quantitative analyses. Furthermore, the study can potentially guide the future AM sustainability model development and be extended to future AM process improvement.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference46 articles.

1. U.S. Environmental Protection Agency (EPA) , 2015, “Report on the Environment (ROE),” https://www.epa.gov/report-environment, Accessed November 19, 2018.

2. Progress in Additive Manufacturing and Rapid Prototyping;Kruth;CIRP Ann.,1998

3. 3D Opportunity: Additive Manufacturing Paths to Performance, Innovation, and Growth;Cotteleer;Deloitte Rev.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3