A Voronoi FE Fatigue Damage Model for Life Scatter in Rolling Contacts

Author:

Jalalahmadi Behrooz1,Sadeghi Farshid1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

It has been widely accepted that the microstructure of bearing materials can significantly affect their rolling contact fatigue (RCF) lives. Hence, microlevel topological features of materials will be of significant importance to RCF investigation. In order to estimate the fatigue lives of bearing elements and account for the effects of topological randomness of the bearing materials, in this work, damage mechanics modeling approach is incorporated into a Voronoi finite element method recently developed by the authors. Contrary to most of the life models existing in the literature for estimating the RCF lives, the current model considers microcrack initiation, coalescence, and propagation stages. The proposed model relates the fatigue life to a damage parameter D, which is a measure of the gradual material degradation under cyclic loading. In this investigation, 40 semi-infinite domains with different microstructural distributions are subjected to a moving Hertzian pressure. Using the fatigue damage model developed, the initiation and total lives of the 40 domains are obtained. Also, the effects of initial material flaws and inhomogeneous material properties (in the form of normal distribution of the elastic modulus) on the fatigue lives are investigated. It is observed that the fatigue lives calculated and their Weibull slopes are in good agreement with previous experimental and analytical results. It is noted that introducing inhomogeneous material properties and initial flaws within the domains decreases the fatigue lives and increases their scatters.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference58 articles.

1. Propagation of Contact Fatigue From Surface and Sub-Surface Origins;Littmann;ASME J. Basic Eng.

2. Littmann, W. E. , 1969, “The Mechanism of Contact Fatigue,” NASA Special Report No. SP-237.

3. Gradual Changes in Residual Stress and Microstructure During Contact Fatigue in Ball Bearings;Voskamp;Met. Technol. (London)

4. Phase Changes in Fatigued Ball Bearings;Österlund;Metall. Trans. A

5. Material Response to Rolling Contact Loading;Voskamp;ASME J. Tribol.

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3