Human Temporomandibular Joint Motion: A Synthesis Approach for Designing a Six-Bar Kinematic Simulator

Author:

Demuynck Michel1,Delnavaz Aidin1,Voix Jérémie1

Affiliation:

1. Department of Mechanical Engineering, École de technologie supérieure, Université du Québec, Montréal, QC H3C 1K3, Canada

Abstract

Abstract The human earcanal can accommodate several types of in-ear devices including hearing aids, earphones, hearing protectors, and earplugs. This canal-type home has a neighbor called the temporomandibular joint (TMJ) whose movements slightly deform the shape of the earcanal. While these cyclic deformations can influence the positioning, comfort, and functioning of ear-fitted devices, they can also provide a significant amount of energy to harvest. Given their importance, the TMJ movements and earcanal deformations have been well studied. However, their mutual actions are still not fully understood. This paper presents the development of a six-bar kinematic TMJ simulator capable of replicating the complicated motion of the jaw. The development relies on a two-phase mechanism design algorithm to numerically optimize and analytically synthesize linkage mechanisms for which the classical optimization approaches cannot return a converged solution. The proposed algorithm enables the design of a kinematic simulator to generate the TMJ path with an average error as low as 1.65% while respecting all the hinge-axis parameters of the jaw. This algorithm can be subsequently used to solve nonlinear complex linkage synthesis problems, and ultimately, the developed kinematic simulator can be used to further investigate TMJ–earcanal interactions.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3