Should Optimal Designers Worry About Consideration?

Author:

Long Minhua1,Ross Morrow W.2

Affiliation:

1. Mechanical Engineering, Iowa State University, Ames, IA 50014 e-mail:

2. Analytics Scientist Ford Research and Innovation Center Palo Alto, Palo Alto, CA 94304 e-mail:

Abstract

Consideration set formation using noncompensatory screening rules is a vital component of real purchasing decisions with decades of experimental validation. Marketers have recently developed statistical methods that can estimate quantitative choice models that include consideration set formation via noncompensatory screening rules. But is capturing consideration within models of choice important for design? This paper reports on a simulation study of a vehicle portfolio design when households screen over vehicle body style built to explore the importance of capturing consideration rules for optimal designers. We generate synthetic market share data, fit a variety of discrete choice models to the data, and then optimize design decisions using the estimated models. Model predictive power and design profitability relative to ideal profits are compared as the amount of market data available increases. We find that even when estimated compensatory models provide relatively good predictive accuracy, they can lead to suboptimal design decisions when the population uses consideration behavior; convergence of compensatory models to noncompensatory behavior is likely to require unrealistic amounts of data; and modeling heterogeneity in noncompensatory screening is more valuable than heterogeneity in compensatory tradeoffs. This supports the claim that designers should carefully identify consideration behaviors before optimizing product portfolios. We also find that higher model predictive power does not necessarily imply more profitable design decisions; different model forms can provide “descriptive” rather than “predictive” information that is useful for design.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3