Three-Dimensional Local Measurements of Bone Strain and Displacement: Comparison of Three Digital Volume Correlation Approaches

Author:

Palanca Marco1,Tozzi Gianluca2,Cristofolini Luca3,Viceconti Marco4,Dall'Ara Enrico4

Affiliation:

1. School of Engineering and Architecture, University of Bologna, Via Terracini 28, Bologna 40131, Italy e-mail:

2. School of Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ, UK e-mail:

3. School of Engineering and Architecture, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy e-mail:

4. Department of Mechanical Engineering and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sir Frederick Mappin Building, Pam Liversidge Building, Sheffield S1 3JD, UK e-mail:

Abstract

Different digital volume correlation (DVC) approaches are currently available or under development for bone tissue micromechanics. The aim of this study was to compare accuracy and precision errors of three DVC approaches for a particular three-dimensional (3D) zero-strain condition. Trabecular and cortical bone specimens were repeatedly scanned with a micro-computed tomography (CT). The errors affecting computed displacements and strains were extracted for a known virtual translation, as well as for repeated scans. Three DVC strategies were tested: two local approaches, based on fast-Fourier-transform (DaVis-FFT) or direct-correlation (DaVis-DC), and a global approach based on elastic registration and a finite element (FE) solver (ShIRT-FE). Different computation subvolume sizes were tested. Much larger errors were found for the repeated scans than for the virtual translation test. For each algorithm, errors decreased asymptotically for larger subvolume sizes in the range explored. Considering this particular set of images, ShIRT-FE showed an overall better accuracy and precision (a few hundreds microstrain for a subvolume of 50 voxels). When the largest subvolume (50–52 voxels) was applied to cortical bone, the accuracy error obtained for repeated scans with ShIRT-FE was approximately half of that for the best local approach (DaVis-DC). The difference was lower (250 microstrain) in the case of trabecular bone. In terms of precision, the errors shown by DaVis-DC were closer to the ones computed by ShIRT-FE (differences of 131 microstrain and 157 microstrain for cortical and trabecular bone, respectively). The multipass computation available for DaVis software improved the accuracy and precision only for the DaVis-FFT in the virtual translation, particularly for trabecular bone. The better accuracy and precision of ShIRT-FE, followed by DaVis-DC, were obtained with a higher computational cost when compared to DaVis-FFT. The results underline the importance of performing a quantitative comparison of DVC methods on the same set of samples by using also repeated scans, other than virtual translation tests only. ShIRT-FE provides the most accurate and precise results for this set of images. However, both DaVis approaches show reasonable results for large nodal spacing, particularly for trabecular bone. Finally, this study highlights the importance of using sufficiently large subvolumes, in order to achieve better accuracy and precision.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3