Affiliation:
1. School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
2. Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
Abstract
AbstractContact interactions play an important role in the tribological behavior of engineering materials. This paper develops a finite element model to investigate the contact mechanics and stress distribution of auxetic materials, i.e., materials with negative Poisson’s ratio. The model results are compared with numerical and mathematical models for isotropic auxetic polymers. The indentation of auxetic materials is analyzed for the effects of friction, plasticity and allowing separation after contact with a spherical indenter using a commercial software, abaqus. The results are discussed in terms of stress profiles, force-indentation depth curves, plasticity, friction, internal energy, compressibility, sink-in, and the pile-up of material. It is concluded that for purely elastic contact, the indentation resistance increases for auxetic materials and the inclusion of friction shifts subsurface stresses closer to the surface. However, the introduction of plasticity negates the improvement of increased indentation resistance. The pile-up of material around the indent reduces for auxetic materials which makes them more suitable for rolling/sliding contacts. The internal strain energy decreases for purely elastic contact and increases for an elastic/plastic contact.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献