Gradient Elasticity Theory for Mode III Fracture in Functionally Graded Materials—Part I: Crack Perpendicular to the Material Gradation

Author:

Paulino G. H.1,Fannjiang A. C.2,Chan Y.-S.3

Affiliation:

1. Department of Civil and Environmental Engineering, University of Illinois, Newmark Laboratory, 205 North Mathews Avenue, Urbana, IL 61801

2. Department of Mathematics, University of California, Davis, CA 95616

3. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

Abstract

Anisotropic strain gradient elasticity theory is applied to the solution of a mode III crack in a functionally graded material. The theory possesses two material characteristic lengths, l and l′, which describe the size scale effect resulting from the underlining microstructure, and are associated to volumetric and surface strain energy, respectively. The governing differential equation of the problem is derived assuming that the shear modulus is a function of the Cartesian coordinate y, i.e., G=Gy=G0eγy, where G0 and γ are material constants. The crack boundary value problem is solved by means of Fourier transforms and the hypersingular integrodifferential equation method. The integral equation is discretized using the collocation method and a Chebyshev polynomial expansion. Formulas for stress intensity factors, KIII, are derived, and numerical results of KIII for various combinations of l,l′, and γ are provided. Finally, conclusions are inferred and potential extensions of this work are discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3