A Preliminary Investigation of the Cooling of Electronic Components With Flat Plate Heat Sinks

Author:

Ahmed I.1,Krane R. J.1,Parsons J. R.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The University of Tennessee, Knoxville, Tennessee 37996-2210

Abstract

Flat rectangular plate heat sinks are often used to cool large electronic components by the combined effects of natural convection and thermal radiation. There is, however, a paucity of rational design techniques for these devices. Thus, a systematic program to investigate the use of flat, rectangular plate heat sinks with surface coatings to enhance the net radiative exchange with the surroundings has been undertaken. The preliminary results of this program are presented in this work. A two-dimensional numerical model of a single electronic component mounted on a vertically oriented, flat rectangular plate heat sink that is located immediately above an upward-facing, horizontal component board was developed for this investigation. This model, which is solved using a control volume method based on the SIMPLER algorithm, accounts for the fully-coupled natural convection, conduction and radiative heat transfer processes that occur in the two-dimensional heat sink configuration described above. The results of a parametric study performed with the numerical model confirm the necessity of employing a heat sink, since for the ranges of values investigated, from 64 to 88 percent of the energy dissipated in the component is transferred to the surroundings from the heat sink. The parametric study examines the effects of component power, heat sink size (height), the thickness and emissivity of the heat sink, the vertical location of the component on the heat sink, and the temperature of the horizontal component board on the temperature of the component mounted on the heat sink.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3