Iterative Learning Method for Drilling Depth Optimization in Peck Deep-Hole Drilling

Author:

Han Ce1,Luo Ming1,Zhang Dinghua1,Wu Baohai1

Affiliation:

1. Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China e-mail:

Abstract

Due to the enclosed chip evacuation space in deep hole drilling process, chips are accumulated in drill flutes as drilling depth increases, resulting in the increase of drilling torque and lead to drill breakage. Peck drilling is a widely used method to periodically alleviate the drilling torque caused by chip evacuation; the drilling depth in each step directly determines both drill life and machining efficiency. The existing drilling depth optimization methods face problems including low accuracy of the prediction model, the hysteresis of signal diagnosis, and onerous experiments. To overcome these problems, a novel drilling depth optimization method for peck drilling based on the iterative learning optimization is proposed. First, the chip evacuation torque coefficients (CETCs) are introduced into the chip evacuation torque model to simplify the model for learning. Then, the effect of chip removal process in peck drilling on drilling depth is analyzed. The extended depth coefficient by chip removal (EDCbCR) is introduced to develop the relationship between the extended depth in each drilling step and drilling depth. On the foundation of the modeling above, an iterative learning method for drilling depth optimization in peck drilling is developed, in which a modified Newton's method is proposed to maximize machining efficiency and avoid drill breakage. In experiments with different cutting parameters, the effectiveness of the proposed method is validated by comparing the optimized and measured results. The results show that the presented learning method is able to obtain the maximum drilling depth accurately with the error less than 10%.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3