Affiliation:
1. Department of Civil and Structural Engineering, Hong Kong Polytechnic, Hong Kong
2. Department of Civil and Structural Engineering, University of Hong Kong, Hong Kong
Abstract
An alternative perturbation procedure of multiple scales is presented in this paper which is capable of treating various periodic and almost periodic steady-state vibrations including combination resonance of nonlinear systems with multiple degrees-of-freedom. This procedure is a generalization of the Lindstedt-Poincare´ method. To show its essential features a typical example of cubic nonlinear systems, the clamped-hinged beam, is analyzed. The numerical results for the almost periodic-free vibration are surprisingly close to that obtained by the incremental harmonic balance (IHB) method, and the analytical formulae for steady-state solution are, in fact, identical with that of conventional method of multiple time scales. Moreover, detail calculations of this example revealed some interesting behavior of nonlinear responses, which is of significance for general cubic systems.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献