Brush Seal Bristle Wear Analysis

Author:

Aksit Mahmut F.1,Tichy John A.2,Dinc O. Saim3

Affiliation:

1. Sabanci University, Istanbul, Turkey

2. Rensselaer Polytechnic Institute, Troy, NY

3. Turkish Petroleum Company, Ankara, Turkey

Abstract

Turbomachinery sealing applications require accommodating large rotor excursions at high surface speeds. Achieving seal compliance under such demanding conditions combined with typical high operating temperatures poses a major engineering challenge. Formed by a dense pack of bristles, brush seals have emerged as viable alternatives to conventional labyrinth seals. Being contact seals, brush seals undergo unavoidable bristle wear in operation. Rate and extent of bristle wear determines seal life and performance. Detailed understanding of brush seal contact loads is necessary to estimate seal wear performance. The complicated nature of bristle behavior under various combinations of pressure load and rotor interference requires computer analysis to study details that may not be available through analytical formulations. This work presents a summary of a 3-D computational brush seal tip force and wear analysis. The analysis models a representative brush segment with bristles formed by 3-D beam elements. Bristle interlocking and frictional interactions (interbristle, bristle-backing plate and bristle-rotor) are included to better calculate resulting seal stiffness and tip forces. Results are compared to stiffness measurements and full scale seal wear tests.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3