A Model for a Gas Column Oscillation Inside a Hole by Irradiating an Acoustic Wave

Author:

Furuya Yuki1,Sanada Toshiyuki1,Watanabe Masao2

Affiliation:

1. Shizuoka University, Shizuoka, Japan

2. Hokkaido University, Sapporo, Japan

Abstract

Abstract Wet cleaning methods using fluid are widely applied in many industrial fields. For a cleaning inside closed-end holes, it is first necessary to fill the holes to be cleaned with the liquid. However, in structures with small holes, it is difficult to discharge inside the gas due to surface tension. In our early studies, we have found that the discharging a gas inside a closed-end hole was promoted by an impingement of droplet train. And the pressure fluctuation near the gas-liquid interface due to droplet impingement was important. In this study, we attempted the gas discharge from closed-end holes due to acoustic wave irradiation. First, we theoretically estimated the oscillation of the gas column inside the hole during acoustic wave irradiation. We modeled the natural frequency of the gas column using a spring-mass system. Then we experimentally measured the fluctuation of the gas-liquid interface for the evaluation of the model. In addition, we compared the gas discharge ratio with different frequency and pressure level. The fluctuation of gas-liquid interface and discharging the gas were observed with a high-speed video camera. As results, the natural frequencies of a gas column were depending on the length of the gas column and the diameter of the hole. From the experiments, we confirmed that the acoustic wave certainly propagated into the hole, and the frequency of the irradiated acoustic wave and the experimentally obtained natural frequency were in good agreement except for extremely low gas discharge ratio condition. Moreover, we observed gas discharge process and found that the high gas discharge ratio were achieved using the acoustic wave close to natural frequency. From these results, we concluded that the assumption based on a spring-mass system is valid.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3