Investigation of Magnetic Journal Bearing Instability Issues in Supercritical CO2 Turbomachinery

Author:

Kim Dokyu1,Baik SeungJoon2,Lee Jeong Ik1

Affiliation:

1. Korea Advanced Institute of Science and Technology, Daejeon, Korea

2. Korea Atomic Energy Research Institute, Daejeon, Korea

Abstract

Abstract With the increasing emphasis on reducing the CO2 emission while improving power generation efficiency, new power cycles are being developed. One of those promising power cycles is a supercritical CO2 (S-CO2) power cycle. To generate over 10MW electricity with S-CO2 power cycle, a magnetic bearing can be a good option for the hermetic type turbomachinery. However, from several studies on the magnetic bearing, the instability issues under high density fluid and high speed operating conditions were repeatedly mentioned. The instability in the magnetic bearing was observed to be related to the fluid conditions, mostly pressure and density. Because of this issue, the magnetic bearing sometimes cannot maintain enough clearance for the rotor leading to physical contact and consequently damaging the system. Thus, these instability issues should be thoroughly studied and be resolved for the successful and steady operation of the power system. The instability due to fluid force around the rotating shaft can be modeled with the Reynolds lubrication equation. The steady lubrication force analysis model is developed based on this equation. The model results imply that the lubrication performance is quite sensitive to the thermal condition of the CO2 especially density gradient around the shaft. Based on the modeling results, an experimental system is designed to investigate the issue. To study the instability issues experimentally, an impeller of the operating S-CO2 compressor is removed and the discharge line is blocked. Therefore, the main instability factor in this experiment will be the interaction between the rotor and the bearing only. The shaft position can be measured with inductive sensors. The forces exerted from the electromagnet is calculated from the electric current data which is applied by the controller. From these experimental data, the lubrication force is calculated. These results are compared with the analytical lubrication model to verify the model. From this study, it is expected that it will be possible to define the unstable operating conditions and suggest the required magnetic bearing performance for S-CO2 conditions.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3