Characterization of Stiffness and Damping in Textured Sector Pad Micro Thrust Bearings Using Computational Fluid Dynamics

Author:

Papadopoulos Christos I.1,Nikolakopoulos Pantelis G.2,Kaiktsis Lambros1

Affiliation:

1. School of Naval Architecture and Marine Engineering, National Technical University of Athens, 15710 Zografos, Greece e-mail:

2. Machine Design Laboratory, Department of Mechanical Engineering and Aeronautics, University of Patras, 26504 Patras, Greece e-mail:

Abstract

In the present paper, a study of stiffness and damping in sector-pad micro thrust bearings with artificial surface texturing is presented, based on computational fluid dynamics (CFD) simulations. The bearing pads are modeled as consecutive three-dimensional independent microchannels, each consisting of a smooth rotating wall (rotor) and a partially textured stationary wall (stator). CFD simulations are performed, consisting in the numerical solution of the Navier–Stokes equations for incompressible isothermal flow. The goal of the present study is to characterize the dynamic behavior of favorable designs, identified in previous optimization studies, comprising parallel and convergent thrust bearings with rectangular texture patterns. To this end, a translational degree of freedom (DOF) along the thrust direction and a rotational (tilting) DOF of the rotor are considered. By implementing appropriate small perturbations around the equilibrium (steady-state) position and processing the simulation results, the stiffness and damping coefficients of the bearing are obtained for each DOF. The computed dynamic coefficients of textured thrust bearings are compared to those of conventional (smooth slider) designs. It is found that the dependence of bearing stiffness and damping on geometrical parameters exhibits the same trends for both DOFs. Both stiffness and damping are found to increase with bearing width. In general, increasing the bearing convergence ratio results in increased bearing stiffness and decreased damping. Finally, the present results demonstrate that properly textured parallel sliders are characterized by an overall dynamic performance that is superior to that of smooth converging sliders.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3