In Vivo Muscle Stiffening Under Bone Compression Promotes Deep Pressure Sores

Author:

Gefen A.1,Gefen N.1,Linder-Ganz E.1,Margulies S. S.2

Affiliation:

1. Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel

2. Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania

Abstract

Pressure sores (PS) in deep muscles are potentially fatal and are considered one of the most costly complications in spinal cord injury patients. We hypothesize that continuous compression of the longissimus and gluteus muscles by the sacral and ischial bones during wheelchair sitting increases muscle stiffness around the bone-muscle interface over time, thereby causing muscles to bear intensified stresses in relentlessly widening regions, in a positive-feedback injury spiral. In this study, we measured long-term shear moduli of muscle tissue in vivo in rats after applying compression (35 KPa or 70 KPa for 1∕4–2 h, N=32), and evaluated tissue viability in matched groups (using phosphotungstic acid hematoxylin histology, N=10). We found significant (1.8-fold to 3.3-fold, p<0.05) stiffening of muscle tissue in vivo in muscles subjected to 35 KPa for 30 min or over, and in muscles subjected to 70 KPa for 15 min or over. By incorporating this effect into a finite element (FE) model of the buttocks of a wheelchair user we identified a mechanical stress wave which spreads from the bone-muscle interface outward through longissimus muscle tissue. After 4 h of FE simulated motionlessness, 50%–60% of the cross section of the longissimus was exposed to compressive stresses of 35 KPa or over (shown to induce cell death in rat muscle within 15 min). During these 4 h, the mean compressive stress across the transverse cross section of the longissimus increased by 30%–40%. The identification of the stiffening-stress-cell-death injury spiral developing during the initial 30 min of motionless sitting provides new mechanistic insight into deep PS formation and calls for reevaluation of the 1 h repositioning cycle recommended by the U.S. Department of Health.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference46 articles.

1. An Experimental Study of Some Pressure Effects on Tissues, With Reference to the Bedsore Problem;Husain;J. Pathol. Bacteriol.

2. Etiologic Factors in Pressure Sores: An Experimental Model;Daniel;Arch. Phys. Med. Rehabil.

3. Establishing Predictive Indicators for the Status of Loaded Soft Tissues;Knight;J. Appl. Physiol.

4. In Vitro Models to Study Compressive Strain-Induced Muscle Cell Damage;Bouten;Biorheology

5. Pressure Ulcer Risk Factors Among Hospitalized Patients With Activity Limitation;Allman;JAMA, J. Am. Med. Assoc.

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3