Affiliation:
1. Whittle Laboratory, Cambridge, UK
Abstract
A methodology is presented for simulating turbomachinery blade rows in a multistage environment by deploying a standard 3D Navier-Stokes solver simultaneously on a number of blade rows. The principle assumptions are that the flow is steady relative to each blade row individually and that the rows can communicate via inter-row mixing planes. These mixing planes introduce circumferential averaging of flow properties but preserve quite general radial variations. Additionally, each blade can be simulated in 3D or axisymmetrically (in the spirit of throughflow analysis) and a series of axisymmetric rows can be considered together with one 3D row to provide, cheaply, a machine environment for that row.
Two applications are presented: a transonic compressor rotor and a steam turbine nozzle guide vane simulated both isolated and as part of a stage. In both cases the behaviour of the blade considered in isolation was different to when considered as part of a stage and in both cases was in much closer agreement with the experimental evidence.
Publisher
American Society of Mechanical Engineers
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献