Controlling Impact Forces in Pneumatic Robot Hand Designs

Author:

Parker J. K.1,Paul F. W.2

Affiliation:

1. University of Alabama, Tuscaloosa, Ala. 35487

2. Clemson University, Clemson, SC 29634

Abstract

Robot hands capable of applying controllable forces to a wide variety of objects would increase the number of robotic applications in manufacturing. One frequently overlooked part of the force control problem is the initial impact between the robot hand “finger” and the object. Experimentally determined impact forces for a variety of hand fingertip and object surface stiffnesses are presented. Impact forces predicted from low order, lumped parameter linear models are also presented for comparison. These results are used to justify velocity control as the means for reducing impact forces. Minimum time optimal control of a robot hand finger with a zero final velocity constraint would give rapid grasping with zero impact force between the finger and object. Experimental and numerical optimal control results for a pneumatically actuated finger are presented. A proof-of-concept robot hand which implements a “near-optimal” control strategy for grasping objects at imprecisely known locations is presented and discussed with experimental results.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Control of Low-Velocity Impact Response in Composite Plates;Journal of Vibration and Control;2000-03

2. Performance of a pneumatic force controlling servosystem: Influence of valves conductance;Robotics and Autonomous Systems;2000-02

3. Soft-handling gripper driven by piezoceramic bimorph strips;Smart Materials and Structures;1996-08-01

4. Force Control of a Flexible Finger with Distributed Sensors and Piezoelectric Actuators;Journal of Intelligent Material Systems and Structures;1996-05

5. Pneumatic Assist Device for Gait Restoration;Journal of Dynamic Systems, Measurement, and Control;1996-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3