Updating and Optimization of a Coning Rotor Concept

Author:

Crawford Curran1,Platts Jim2

Affiliation:

1. Department of Mechanical Engineering, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada

2. Institute for Manufacturing, Department of Engineering, Cambridge University, Mill Lane, Cambridge, CB2 1RX, UK

Abstract

The work detailed in this paper is focused on updating and refining a coning rotor wind turbine concept. The coning rotor combines the load shedding properties of flapping hinges with gross change in rotor area, via large coning angles, to affect increased energy capture at nominally constant system cost. Previous studies have indicated that the large cost of energy reductions is possible, compared to the state-of-the-art machines then, particularly for abundant but presently uneconomic low-wind sites. Almost ten years later, the fundamentals of the design remain sound, but bear reevaluation relative to current machines, both exploiting modern power electronics and control technology. The coning rotor was never optimized in its own right, so an integrated design tool suitable for human and computer refinement of the design has been developed. Incorporated into the tool is a corrected blade element momentum method that more properly accounts for coned rotor aerodynamics. A discussion of the development of coning rotors is presented, along with a comparison to present operational strategies. Results obtained for nondimensionalized rotors and specific machine optimization studies are presented, followed by a discussion of further issues to be addressed.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference30 articles.

1. Rasmussen, F., and Kretz, A., 1992, “Dynamics and Potentials for the Two-Bladed Teetering Rotor Concept,” Riso National Laboratory, Technical Report.

2. Advanced Wind Turbine Design;Jamieson;Wind Energy

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3