Numerical Simulation of Turbulent Mist Flows With Liquid Film Formation in Curved Pipes Using an Eulerian–Eulerian Method

Author:

Zhang Pusheng1,Roberts Randy M.2,Bénard André3

Affiliation:

1. Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824 e-mail:

2. Chevron Energy Technology Company, Houston, TX 77002

3. Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824

Abstract

Turbulent flows of air/water mixtures through curved pipes are modeled in this work using a Eulerian–Eulerian method. This is motivated by the possibility of using computational fluid dynamics (CFD) as a design tool applied to curved pipes feeding a gas/liquid separator. The question is to identify the curvature of such pipes that can promote film formation upstream of the separator and, thus, precondition the flow without creating a large pressure drop. The performance of the mixture theory with a drift flux model and the “realizable” k-ε closure was evaluated in the simulations. The enhanced wall treatment (EWT) was utilized to resolve the flow in the near-wall region. A qualitative study was first conducted to investigate the flow patterns and the liquid film formation in a 180 deg bend. The numerical results were validated by comparing the computed pressure drop with empirical correlations from the literature. Subsequently, the importance of droplet size and liquid volume fraction was investigated by studying their effect on the flow patterns of the continuous phase, as well as their impact on the secondary flow intensity, the pressure drop, and the liquid film formation on the wall. Various pipe geometries were studied to achieve a low pressure drop while maintaining a high droplet deposition. Results show that a combination of the drift flux model with the realizable k-ε closure and EWT for the near-wall treatment appears capable of capturing the complex secondary flow patterns such as those associated with film inversion. The pressure drop computed for various flows appear to be in good agreement with an empirical correlation. Finally, bends with a curvature ratio around 7 appear to be the optimal for providing a small pressure drop as well as a high droplet deposition efficiency in a U-bend.

Publisher

ASME International

Subject

Mechanical Engineering

Reference44 articles.

1. Flow in Curved Pipes;Ann. Rev. Fluid Mech.,1983

2. Computational Guidelines and an Empirical Model for Particle Deposition in Curved Pipes Using an Eulerian-Lagrangian Approach,2012

3. Drop Sizes in Annular Two-phase Flow;Exper. Fluid.,1985

4. Two-Phase Pressure Drop in Piping Components,1964

5. Single- and Two-Phase Flow Through Helically Coiled Tubes;Chem. Eng. Sci.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3