Recoverable Versus Unrecoverable Degradations of Gas Turbines Employed in Five Natural Gas Compressor Stations

Author:

Botros K. K.1,Hartloper C.1,Golshan H.2,Rogers D.2

Affiliation:

1. NOVA Chemicals, Centre for Applied Research, Calgary, AB T2E 7K7, Canada e-mail:

2. TransCanada Pipelines Limited, Calgary, AB T2P 5H1, Canada e-mail:

Abstract

Gas turbines (GT), like other prime movers, experience wear and tear over time, resulting in decreases in available power and efficiency. Further decreases in power and efficiency can result from erosion and fouling caused by the airborne impurities the engine breathes in. To counteract these decreases in power and efficiency, it is a standard procedure to “wash” the engine from time to time. In compressor stations on gas transmission systems, engine washes are performed off-line and are scheduled in such intervals to optimize the maintenance procedure. This optimization requires accurate prediction of the performance degradation of the engine over time. A previous paper demonstrated a methodology for evaluating various components of the GT gas path, in particular, the air compressor side of the engine since it is most prone to fouling and degradation. This methodology combines gas path analysis (GPA) to evaluate the thermodynamic parameters over the engine cycle followed by parameter estimation based on the Bayesian error-in-variable model (EVM) to filter the data of possible noise due to measurement errors. The methodology quantifies the engine-performance degradation over time, and indicates the effectiveness of each engine wash. In the present paper, the methodology was extended to assess both recoverable and unrecoverable degradations of five GT engines employed on TransCanada's pipeline system in Canada. These engines are: three GE LM2500+, one RR RB211-24G, and one GE LM1600 GTs. Hourly data were collected over the past 4 years, and engine health parameters were extracted to delineate the respective engine degradations. The impacts of engine loading, site air quality conditions, and site elevation on engine-air-compressor isentropic efficiency are compared between the five engines.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3