Effect of Free-Stream Turbulence on Flat-Plate Heat Flux Signals: Spectra and Eddy Transport Velocities

Author:

Moss R. W.1,Oldfield M. L. G.1

Affiliation:

1. Department of Engineering Science, University of Oxford, Oxford, United Kingdom

Abstract

An experimental study of the eddy structure in a flat-plate turbulent boundary layer with significant levels of free-stream turbulence is presented. This is relevant to the enhancement of turbomachinery heat transfer by turbulence and should lead to more realistic CFD modeling. Previous measurements showed that Nusselt numbers may be increased by up to 35 percent, and that this increase depended on turbulence integral length scale as well as intensity. The new results described here provide an insight into the mechanism responsible. Thin film gages and hot wires were used to take simultaneous high-frequency measurements of fluctuating heat transfer rates to the flat plate and the fluctuating flow velocity in the free stream and boundary layer. Spectra and correlation analysis shows that the turbulent eddy structure of the boundary layer is dominated by the free-stream turbulence at intensities of 3 percent and above. Eddies in the boundary layer mimicked those in the free stream and convected at the free-stream velocity U, rather than the ∼0.8U characteristic of boundary layers. The main heat transfer enhancing mechanism is due to the penetration of free-stream turbulent eddies deep into the boundary layer, rather than enhancement of existing boundary layer turbulence.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3