The Measurement of Temperature With Electron Paramagnetic Resonance Spectroscopy

Author:

Eckburg J. J.1,Chato J. C.1,Liu K. J.1,Grinstaff M. W.1,Swartz H. M.1,Suslick K. S.1,Auteri F. P.1

Affiliation:

1. Departments of Mechanical and Industrial Engineering, Chemistry, and Internal Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Abstract

An electron paramagnetic resonance (EPR) technique, potentially suitable for in vivo temperature measurements, has been developed based on the temperature response of nitroxide stable free radicals. The response has been substantially enhanced by encapsulating the nitroxide in a medium of a fatty acid mixture inside a proteinaceous microsphere. The mixture underwent a phase transition in the temperature range required by the application. The phase change dramatically altered the shape of the EPR spectrum, providing a highly temperature sensitive signal. Using the nitroxide dissolved in a cholesterol and a long-chain fatty acid ester, we developed a mixture which provides a peakheight ratio change from 3.32 to 2.11, with a standard deviation of 0.04, for a temperature change typical in biological and medical applications, from 38 to 48°C. This translated to an average temperature resolution of 0.2°C for our experimental system. The average diameter of the nitroxide mixture-filled microspheres was ≈2 μm. Therefore, they are compatible with in vivo studies where the microspheres could be injected into the microvasculature having a minimum vessel diameter of the order of 8 μm. This temperature measuring method has various potential clinical applications, especially in monitoring and optimizing the treatment of cancer with hyperthermia. However, several problems regarding temperature and spatial resolution need to be resolved before this technique can be successfully used to monitor temperatures in vivo.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3