Experimental Investigation of Second-Harmonic Lamb Wave Generation in Additively Manufactured Aluminum

Author:

Vien Benjamin Steven1,Chiu Wing Kong1,Francis Rose L. R.2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Monash University, Building 37, Clayton Campus Wellington Road, Clayton 3168, VIC, Australia e-mail:

2. Defence Science & Technology Group, 506 Lorimer Street, Fishermans Bend 3207, VIC, Australia e-mail:

Abstract

The correlation between the nonlinear acousto-ultrasonic response and the progressive accumulation of fatigue damage is investigated for an additively manufactured aluminum alloy AlSi7Mg and compared with the behavior of a conventional wrought aluminum alloy 6060-T5. A dual transducer and wedge setup is employed to excite a 30-cycle Hann-windowed tone burst at a center frequency of 500 kHz in plate-like specimens that are 7.2 mm thick. This choice of frequency-thickness is designed to excite the symmetric Lamb mode s1, which, in turn, generates a second-harmonic s2 mode in the presence of distributed material nonlinearity. This s1-s2 mode pair satisfies the conditions for internal resonance, thereby leading to a cumulative build-up of amplitude for the second-harmonic s2 mode with increasing propagation distance. Measurements of a nonlinearity parameter β derived from the second-harmonic amplitude are plotted against propagation distance at various fractions of fatigue life under constant amplitude loading, for three different stress levels corresponding to low-cycle fatigue (LCF), high-cycle fatigue (HCF), and an intermediate case. The results show both qualitative and quantitative differences between LCF and HCF, and between the additively manufactured specimens and the wrought alloy. The potential use of this nonlinearity parameter for monitoring the early stages of fatigue damage accumulation, and hence for predicting the residual fatigue life, is discussed, as well as the potential for quality control of the additive manufacturing (AM) process.

Funder

Australian Research Council

Publisher

ASME International

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Civil and Structural Engineering

Reference61 articles.

1. Evaluation of Plasticity Driven Material Damage Using Lamb Waves;Appl. Phys. Lett.,2007

2. Experimental Characterization of Material Nonlinearity Using Lamb Waves;Appl. Phys. Lett.,2007

3. Fatigue Damage Assessment by Nonlinear Ultrasonic Materials Characterization;Ultrasonics,1998

4. Nonlinear Acoustics, a Technique to Determine Microstructural Changes in Materials,1991

5. Nonlinear Elastic Constants of Solids With Cracks;J. Acoust. Soc. Am.,1997

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3