External Pressure Loading of Spiral Paper Tubes: Theory and Experiment

Author:

Gerhardt T. D.1

Affiliation:

1. Sonoco Products Company, 505D Science Dr., Madison, WI 53711

Abstract

A closed-form elasticity solution is developed to predict stresses and strains in spiral paper tubes loaded axisymmetrically. No assumptions are made on stress distributions through the tube wall. Thus, the solution is valid for thick-walled tubes. The validity of this solution is established by comparison with experimental results. Measured strains in tubes subjected to external pressure showed remarkable agreement with the elasticity solution. After experimental verification, the elasticity solution is used to examine stress distributions in paper tubes loaded in external pressure. In both paper and isotropic tubes, the hoop stress dominates the other three stresses. However, the hoop stress distribution in paper tubes was radically different from the isotropic case. In paper tubes: (1) hoop stress was concentrated at the outer wall, especially for thicker tubes and (2) maximum hoop stress remained constant as tube thickness was increased. These differences can be attributed to the extremely small modulus in the radial direction of a paper tube. The hoop stress distributions indicate that isotropic, thick-walled cylinder theory is inapplicable for modeling paper tubes.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Paperboard tubes in structural and construction engineering;Nonconventional and Vernacular Construction Materials;2020

2. Paperboard tubes in structural and construction engineering;Nonconventional and Vernacular Construction Materials;2016

3. General Anisotropy Identification of Paperboard with Virtual Fields Method;Experimental Mechanics;2014-08-01

4. Investigation of paperboard tubes as formwork for concrete bridge decks;Construction and Building Materials;2012-05

5. Pultruded Glass Fiber-reinforced Plastic and Paperboard Composite Tubes;Journal of Reinforced Plastics and Composites;2005-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3