A Comparison of the Theories for Predicting Width and Extent of Vertical Hydraulically Induced Fractures

Author:

Geertsma J.1,Haafkens R.1

Affiliation:

1. Koninklijke/Shell Exploratie en Produktie Laboratorium, Rijswijk, The Netherlands

Abstract

Prediction of fracture dimensions during propagation of a hydraulically induced fracture for well stimulation is essential for the design of a stimulation treatment. During the past decade much effort has been spent on the development of a suitable theory for this purpose. Since neither the length nor the width of a hydraulically induced fracture can be measured in situ during a field treatment, this is primarily a mental exercise in applied mechanics. The main measurable quantities that are directly related to the fracture propagation process are the total volume of fracturing fluid injected into the reservoir and the time required to accomplish this. Not surprizingly, various authors have arrived at different theories, depending on the assumed conditions prevailing downhole. In this paper, the assumptions underlying the various theories currently in use for the prediction of fracture dimensions, viz., those of Perkins and Kern, of Nordgren, of Geertsma and De Klerk and of Daneshy, are compared. Rather than take issue for one particular theory, which appeared impossible because none of the theories is perfect, the paper shows what the various theories have in common, where and why they differ from each other and what the practical consequences are in case of application to treatment design.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3