The Complementary Energy Theorem in Finite Elasticity

Author:

Levinson Mark1

Affiliation:

1. Mechanical Engineering Department, Clarkson College of Technology, Potsdam, N. Y.

Abstract

Other investigators have extended the complementary energy theorem (Castigliano’s theorem) to cover the finite deformation of elastic systems with a finite number of degrees of freedom (structures) and they then have indicated that the extension of the theorem to cover the finite deformation of an elastic continuum involved certain unstated difficulties. The present paper shows that when the strain tensor and Trefftz stress tensor, the usual choice of conjugate deformation and stress tensors, are chosen to characterize the finite deformation of an elastic continuum, one cannot establish a strict complementary energy theorem. It is then shown that a strict complementary energy theorem for the finite deformation of an elastic continuum can be established if what Fritz John calls the Lagrange strain and Lagrange stress tensors are used as the conjugate deformation and stress tensors characterizing the deformation.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mesoscopic Analysis of Rounded and Hybrid Aggregates in Recycled Rubber Concrete;Materials;2023-10-08

2. A non-linear complementary energy-based constitutive model for incompressible isotropic materials;International Journal of Non-Linear Mechanics;2023-01

3. The base force element method based on the arc-length method for stability analysis;International Journal of Non-Linear Mechanics;2022-09

4. Design of Compliant Iris;Lecture Notes in Mechanical Engineering;2021-07-22

5. Complementary Energy Principle on Base Forces;Advances in the Base Force Element Method;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3