Affiliation:
1. e-mail: Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, TX 78712
Abstract
Pressurized graphene bubbles have been observed in experiments, which can be used to determine the mechanical and adhesive properties of graphene. A nonlinear plate theory is adapted to describe the deformation of a graphene monolayer subject to lateral loads, where the bending moduli of monolayer graphene are independent of the in-plane Young's modulus and Poisson's ratio. A numerical method is developed to solve the nonlinear equations for circular graphene bubbles, and the results are compared to approximate solutions by analytical methods. Molecular dynamics simulations of nanoscale graphene bubbles are performed, and it is found that the continuum plate theory is suitable only within the limit of linear elasticity. Moreover, the effect of van der Waals interactions between graphene and its underlying substrate is analyzed, including large-scale interaction for nanoscale graphene bubbles subject to relatively low pressures.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献