Affiliation:
1. e-mail: Department of Mechanical Engineering, University of Maryland, College Park, MD 20742
Abstract
The open topology of a carbon nanoscroll (CNS) inspires potential applications such as high capacity hydrogen storage. Enthusiasm for this promising application aside, one crucial problem that remains largely unexplored is how to shuttle the hydrogen molecules adsorbed inside CNSs. Using molecular dynamics simulations, we demonstrate two effective transportation mechanisms of hydrogen molecules enabled by the torsional buckling instability of a CNS and the surface energy induced radial shrinkage of a CNS. As these two mechanisms essentially rely on the nonbonded interactions between the hydrogen molecules and the CNS, it is expected that similar mechanisms could be applicable to the transportation of molecular mass of other types, such as water molecules, deoxyribonucleic acids (DNAs), fullerenes, and nanoparticles.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献