Design of an MRI-Compatible Robotic Stereotactic Device for Minimally Invasive Interventions in the Breast†

Author:

Larson Blake T.1,Erdman Arthur G.1,Tsekos Nikolaos V.2,Yacoub Essa3,Tsekos Panagiotis V.4,Koutlas Ioannis G.5

Affiliation:

1. Dept. of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455

2. Mallinckrodt Institute of Radiology, Washington University, 510 S Kingshighway Blvd, Campus Box 8225, St. Louis, MO 63110

3. Center of Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street SE, Minneapolis, MN 55455

4. Artemis MRI, LLC, 2322 Towerview Circle, Bloomington, MN 55431

5. Oral Pathology, University of Minnesota, 515 Delaware St SE, Minneapolis, MN 55455

Abstract

The objective of this work was to develop a robotic device to perform biopsy and therapeutic interventions in the breast with real-time magnetic resonance imaging (MRI) guidance. The device was designed to allow for (i) stabilization of the breast by compression, (ii) definition of the interventional probe trajectory by setting the height and pitch of a probe insertion apparatus, and (iii) positioning of an interventional probe by setting the depth of insertion. The apparatus is fitted with five computer-controlled degrees of freedom for delivering an interventional procedure. The entire device is constructed of MR compatible materials, i.e. nonmagnetic and non-conductive, to eliminate artifacts and distortion of the MR images. The apparatus is remotely controlled by means of ultrasonic motors and a graphical user interface, providing real-time MR-guided planning and monitoring of the operation. Joint motion measurements found probe placement in less than 50 s and sub-millimeter repeatability of the probe tip for same-direction point-to-point movements. However, backlash in the rotation joint may incur probe tip positional errors of up to 5 mm at a distance of 40 mm from the rotation axis, which may occur for women with large breasts. The imprecision caused by this backlash becomes negligible as the probe tip nears the rotation axis. Real-time MR-guidance will allow the physician to correct this error. Compatibility of the device within the MR environment was successfully tested on a 4 Tesla MR human scanner.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3