Evaluation of the Effectiveness of Base Insulation on the Productivity of a Packed Bed Solar Air Heater

Author:

Verma Sunirmit1,Das Ranjan1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India

Abstract

Abstract Effect of bottom surface thermal energy loss for a packed bed solar air heater is investigated using both one-dimensional transient and steady-state models. While the former is solved numerically, closed-form solution is obtained for the latter. The effect of variation in base insulation thickness on the system output is studied. For a given bottom insulation thickness, the dependence of its effectiveness on various thermo-geometric parameters is also analyzed. It is observed that a collector with an uninsulated base loses about 60% of the available incident solar energy. In comparison, when the base insulation is as thick as the base wall, i.e., 50 mm here, the base loss fraction drops to nearly 6%, thus highlighting the importance of base insulation. Further, it is seen that the efficiency of a particular base insulation thickness lessens with larger length and width of collector, and rises with a larger mass flowrate of air flowing through it. This work presents a mathematical tool to calculate appropriate insulation thermal resistance to be applied at the base of packed bed solar air heaters that yields the best possible thermal performance alongside minimum insulation cost.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3