Affiliation:
1. Center for Energy and Combustion Research 0310, University of California, La Jolla, CA 92093-0310
2. Power Technology Division 301-3, NASA Lewis Research Center, Cleveland, OH 44135
Abstract
Equations are formulated for the two-dimensional, anisotropic conduction of heat in space radiator fins. The transverse temperature field is obtained by the integral method, and the axial field by numerical integration. A shape factor, defined for the heat-pipe interface boundary condition, simplifies the analysis and renders the results applicable to general heat-pipe/conduction-fin designs. The thermal results are summarized in terms of the fin efficiency, a fin length parameter, and a radiation/axial-conductance number. These relations, together with those for mass distribution between fins, heat pipes, and headers are used in formulating a radiator mass/heat-rate criterion function. Minimization of the criterion function results in asymptotic solutions for the optimum radiator geometry and conditions. The effect of physical properties on the optimum design is determined; in particular, performance is found to vary with fin conductivity to the 1/3 power for large conductivity values.
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献