Minimum-Weight Analysis of Anisotropic Plane-Fin Heat-Pipe Space Radiators

Author:

Lund Kurt O.1,Baker Karl W.2

Affiliation:

1. Center for Energy and Combustion Research 0310, University of California, La Jolla, CA 92093-0310

2. Power Technology Division 301-3, NASA Lewis Research Center, Cleveland, OH 44135

Abstract

Equations are formulated for the two-dimensional, anisotropic conduction of heat in space radiator fins. The transverse temperature field is obtained by the integral method, and the axial field by numerical integration. A shape factor, defined for the heat-pipe interface boundary condition, simplifies the analysis and renders the results applicable to general heat-pipe/conduction-fin designs. The thermal results are summarized in terms of the fin efficiency, a fin length parameter, and a radiation/axial-conductance number. These relations, together with those for mass distribution between fins, heat pipes, and headers are used in formulating a radiator mass/heat-rate criterion function. Minimization of the criterion function results in asymptotic solutions for the optimum radiator geometry and conditions. The effect of physical properties on the optimum design is determined; in particular, performance is found to vary with fin conductivity to the 1/3 power for large conductivity values.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance analysis of indirect contact heat pipe radiator for space nuclear power system;Progress in Nuclear Energy;2024-07

2. An Assessment of Extended Surfaces-Two Dimensional Effects;International Journal of Engineering Research in Africa;2015-04

3. Optimum Design of Radiating and Convecting-Radiating Fins;Heat Transfer Engineering;1996-07

4. Heat transfer—a review of 1993 literature;International Journal of Heat and Mass Transfer;1996-03

5. Analysis of close-paced brush-fiber interfaces for spacecraft thermal management;Journal of Spacecraft and Rockets;1995-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3