Affiliation:
1. Saveetha Engineering College, Anna University, Chennai, Tamil Nadu 602105, India
Abstract
Abstract
Detailed heat transfer distributions of multiple microscaled tapered jets orthogonally impinging on the surface of a high-power density silicon wall is presented. The tapered jets issued from two different impingement setup are studied—(a) single circular nozzle and (b) dual circular nozzles. Jets are issued from the inlet(s) at four different Reynolds numbers {Re = 8000, 12,000, 16,000, 20,000}. The spacing between the tapered nozzle jets and the bare die silicon wall (z/d) is adjusted to be 4, 8, 12, and 16 jet nozzle diameters away from impinging influence. The impact of varying the nozzle to the silicon wall (z/d) standoff spacing up to 16 nozzle jet diameters and its effects on flow fields on the surface of the silicon, specifically the entrainment pattern on the silicon surface, is presented. Heat transfer characteristics of impinging jets on the hot silicon wall is investigated by means of large eddy simulations (LES) at a Reynolds of 20,000 on each of the four z/d spacing and compared against its equivalent Reynolds-averaged Navier–Stokes (RANS) cases. Highest heat transfer coefficients are obtained for the dual inlet system. A demarcation boundary region connecting all the microvortices between impinging jets is prominently visible at smaller z/d spacing—the region where the target silicon wall is within the sphere of influence of the potential core of the jet. This research focuses on the underlying physics of multiple tapered nozzles jet impingement issued from single and dual nozzles and its impact on turbulence, heat transfer distributions, entrainment, and other pertinent flow-field characteristics.
Subject
Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials