Robust Tool Wear Estimation With Radial Basis Function Neural Networks

Author:

Elanayar Sunil1,Shin Yung C.1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

In this paper, a unified method for constructing dynamic models for tool wear from prior experiments is proposed. The model approximates flank and crater wear propagation and their effects on cutting force using radial basis function neural networks. Instead of assuming a structure for the wear model and identifying its parameters, only an approximate model is obtained in terms of radial basis functions. The appearance of parameters in a linear fashion motivates a recursive least squares training algorithm. This results in a model which is available as a monitoring tool for online application. Using the identified model, a state estimator is designed based on the upperbound covariance matrix. This filter includes the errors in modeling the wear process, and hence reduces filter divergence. Simulations using the neural network for different cutting conditions show good results. Addition of pseudo noise during state estimation is used to reflect inherent process variabilities. Estimation of wear under these conditions is also shown to be accurate. Simulations performed using experimental data similarly show good results. Finally, experimental implementation of the wear monitoring system reveals a reasonable ability of the proposed monitoring scheme to track flank wear.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3